This article was downloaded by: [University of Haifa Library]

On: 16 August 2012, At: 08:55 Publisher: Taylor & Francis

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH,

UK

Molecular Crystals and Liquid Crystals Science and Technology. Section A. Molecular Crystals and Liquid Crystals

Publication details, including instructions for authors and subscription information: http://www.tandfonline.com/loi/gmcl19

Bacteriorhodopsin Analogs, Bearing Modified Chromophore as a Basis for the Photochromic Materials

A. A. Khodonov ^a , S. V. Shevyakov ^a , E. V. Mironova ^a , V. I. Shvets ^a , S. G. Alexeeva ^a , O. V. Demina ^b ,

L. V. Khitrina ^c & A. D. Kaulen ^c

^a M.V. Lomonosov State Academy of Fine Chemical Technology, 117571, Moscow, Vernadskogo av. 86, Russia

^b N.M. Emanuel Institute for Biochemical Physics, RAS, 117977, Moscow, Kosygina str. 4

^c A.N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, 119899, Moscow, Russia

Version of record first published: 24 Sep 2006

To cite this article: A. A. Khodonov, S. V. Shevyakov, E. V. Mironova, V. I. Shvets, S. G. Alexeeva, O. V. Demina, L. V. Khitrina & A. D. Kaulen (2000): Bacteriorhodopsin Analogs, Bearing Modified Chromophore as a Basis for the Photochromic Materials, Molecular Crystals and Liquid Crystals Science and Technology. Section A. Molecular Crystals and Liquid Crystals, 345:1, 317-322

To link to this article: http://dx.doi.org/10.1080/10587250008023938

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.tandfonline.com/page/terms-and-conditions

This article may be used for research, teaching, and private study purposes. Any substantial or systematic reproduction, redistribution, reselling, loan, sub-licensing, systematic supply, or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae, and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand, or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

Bacteriorhodopsin Analogs, Bearing Modified Chromophore as a Basis for the Photochromic Materials

A.A. KHODONOV^a, S.V. SHEVYAKOV^a, E.V. MIRONOVA^a, V.I. SHVETS^a, S.G. ALEXEEVA^a, O.V. DEMINA^b, L.V. KHITRINA^c and A.D. KAULEN^c

^aM.V.Lomonosov State Academy of Fine Chemical Technology, 117571, Moscow, Vernadskogo av. 86, Russia, ^bN.M. Emanuel Institute for Biochemical Physics, RAS, 117977, Moscow, Kosygina str. 4 and ^cA.N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, 119899, Moscow, Russia

Relationships of the chromophore structure and photochemical behaviour of bacteriorhodopsin analogs in solution and their possible technical applications were discussed.

Keywords: retinal; bacteriorhodopsin; chromophore modification; photochromic materials

Introduction

Bacteriorhodopsin (BR) is a light-driven proton translocase from *Halobacterium salinarium*, discovered in 1971 by Oesterhelt and Stoeckenius. BR is localized in specialized areas of the cell membrane, so-called purple membranes (PM). It has a chromophore group - retinal (vitamine A aldehyde) protonated Schiff base (SBH⁺) with an ε-aminogroup of Lys²¹⁶-residue [1-4]. After absorbing a quantum of light,

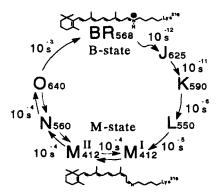
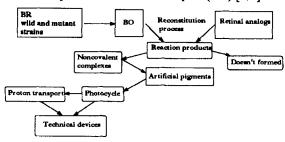



Fig. 1. A BR photochemical reactions' cycle [1,5].

BR undergoes a cycle of photochemical reactions (see Fig. 1), which are accompaning conformational changes in its chromophore and protein parts. The main key states are the B-state (λ_{max} 570 nm, ϵ 63000 M⁻¹ cm⁻¹) and the M-state (λ_{max} 412 nm, ϵ 34000 M⁻¹ cm⁻¹, ϕ 0.64). This paper summarizes our results on modification chromophore structure affect on the spectral and on the photochemical characteristics of its analogs' interaction products with bacterioopsin (BO) [1,2].

Scheme 1. BR analogs' preparation procedure.

Results and Discussion.

Availability of a cycle of reversible photochemical reactions allowes to create a number of photochromic and holographic media on this protein

basis [3-5]. The changes in the molecule's photochromic properties during the photocycle can be utilized in information technology components with optical input- and optical output-signals. The proton release and intake around the M-state form the basis for components with optical input- and electrical output-signals. It was found that BR is a particularly promising photochromic material with a high reversibility quotient, surpassing many materials currently in use. Unfortunately, the practical application of such photochromic materials is limited by the fast M-form decay (~ 10 ms) in natural BR. Lately, several perspective directions were proposed in this area: 1) utilisation of natural BR incorporated into a polymer matrix, oriented Langmiur-Blodgett films or oriented layers' immobilisation on solid support; 2) using of mutants BR strains with slower photocycles [3]. Our approach includes the substitution of natural BR chromophore - retinal - for its analogs. During last years our group carried out a comprehensive investigation the influence of functional responsible element of the chromophore structure' (FRECS) nature on BR analogs' formation spatial restrictions and its photochemical behaviour.

Interaction of polyenals with BO starts from the formation of a noncovalent complex with λ_{max} in the range 390 - 460 nm, which can, although not always be converted to the pigment (see Scheme 1). Such transformation is usually accompanied by bathochromic shift of absorption band, reflecting formation of protonated SB. The comparative analysis of our database, including the information on spectral characteristics and proton transport efficiency of the interaction products more than 340 polyenic compounds with BO has shown, that,

it is possible directly to change a λ_{max} in BR analogs' spectra in the rather wide interval (from 412 to 830 nm) by diversified the FRECS nature, though not all of these pigments are capable to cyclic photochemical reactions [1,2]. However, the problem of a quantitative estimation of influencing FRECS on chromophore - protein interaction character in BR is quite complicated. For this purpose the next parameters were proposed: - "opsin shift" (Os) [6] and - "red shift" $(\Sigma RS) = (Os) + (\Delta SB) + (\Delta SBH^{+})$, responsible for spectral shift of analog relatively model - nonprotonated all-E-retinal SB with nbutylamine [7]. These parameters reflect the following contributions: a) interaction with microenvironment of BR chromophoric centre cavity -(Os) = $1/\lambda_{max}$ SBH⁺ - $1/\lambda_{max}$ (P^{LA}); b) shift of λ_{max} position due to replacement of natural retinal in nonprotonated SB by its analog - (ΔSB) = $1/\lambda_{max}$ SB - $1/\lambda_{max}$ SB(all-E-retinal); c) shift accompanying protonation of retinal analog - $(\Delta SBH^{+}) = 1/\lambda_{max}SB - 1/\lambda_{max}SBH^{+}$. We conducted the calculations of these parameters for BR analogs' selection serie (shown in Table 1 and Fig. 2), which are by our opinion, the most promising for technological applications (photochromic materials, holographic media, optic memory elements, etc., see [4,5]). The BR (1,2) analogs' photocycle kinetics is very similar, but others BR analogs have a slow component of M-state decay and slow relaxation of B-state back reaction part of the its photocycle. This slow component is only slightly appeared in BR (7,8), arised in BR (6) and rather significant in BR (4) (slow in several times). The most drastically retardation takes place in 4-ketoBR, where back-reaction velocity was slowed-down on ~3 orders.

aromatic BR analogs: y(SB) = 21.542 + 0.884x; (R 0.98); y(SBH*) = 160.7 + 1.57x; (R 0.99); y(P(LA)) = -3.015 + 1.283x; (R 0.90). BR analogs with C-13-substituted chromophore: y(SB) = 138.40 + 0.578x; (R 0.51); y(SBH*) = -173.0 + 1.614x; (R 0.82); y(P(LA)) = -756.8 + 3.433x; (R 0.75). 11,12-didehydro BR analogs: y(SB) = 70.997+ 0.776x; (R 0.82); y(SBH*) = 74.632 + 0.969x; (R 0.88); y(P(LA)) = -15.13 + 1.306x; (R 0.90). BR analogs with substituted trimethylcyclohexene ring: y(SB) = -40.27 + 1.609x; (R 0.91); y(SBH*) = 36.305 + 1.059x; (R 0.86); y(P(LA)) = 99.43 + 1.53x; (R 0.69).

TABLE 1. Structure and photochemical properties of BR analogs.

N	Bacteriorhodopsin chromophore analog structure	λ _{max} P ^{t.A} form (B-state) nm	λ _{max} M-state nm	M-state decay type	(OS) cm 1	Σ(RS) cm ^t
1	2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2					
	6-s-cis- la 6-s-trans- lb	568	412	fast	5120 3900	10480 9870
2	Litalo	603	425	fast	5010	8440
3	X-1-1-0	506	410	slow	3770	6970
4	Xadado o	452	≤375	slow	1680	8370
5	Z	624	430	fast	5390	11000
6	X I	572	415	slow	4500	9100
7		514	395	slow	3040	7640
8	X	539	-410	slow	5370	12280

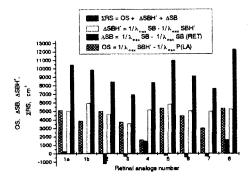


Fig.2 Individual components' contribution in Σ RS of BR analogs spectra. Also, our data show that in the frames of defined type modification relationship between λ_{max} position in dependence of FRECS nature adequately described by linear regression equations in axes (Y) - λ_{max} SB or (SBH*, P^{LA}) / (X) - λ_{max} (CHO).

Acknowledgments

This work was partly supported by the RFBR (project N 97-04-49749)

References

- A.A. Khodonov, S.V. Eremin, J.L. Lockshin, et al., *Bioorgan. Khim. Rus*). 22, 745 (1996).
- [2] A.A. Khodonov, Doctor of Sciences Degree Thesis, Moscow (1997).
- [3] D. Oesterhelt, C. Brauchle, N. Hamp, Quarter. Rev. Biophysics. 24, 425 (1991).
- [4] Photosensitive biological complexes and optical registration of information. RAS, Pushchino, Russia, (1985).
- [5] A.A. Khodonov, O.V. Demina, et al., Sensors and Actuators. B 39, 218 (1997).
- [6] K. Nakanishi, V. Balogh-Nair, M. Arnaboldi, et al., J. Amer. Chem. Soc. 102, 7945 (1980).
- [7] R.S.H. Liu, E. Krough, X.-Y. Li, et al., Photochem. Photobiol. 58, 701 (1993).